
6 No. 4 Shamir and Sharan

CLICK: A Clustering Algorithm for Gene Expression

Analysis

Ron Shamir Roded Sharan
shamir@math.tau.ac.il roded@math.tau.ac.il

Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

Keywords: clustering, gene expression, graph algorithms, minimum cut, likelihood

1 Introduction

Novel DNA microarray technologies enable the monitoring of expression levels of thousands of genes
simultaneously. This allows for the first time a global view on the transcription levels of many (or
all) genes when the cell undergoes specific conditions or processes. The potential of such technologies
for functional genomics is tremendous: Measuring gene expression levels in different developmental
stages, different body tissues, different clinical conditions and different organisms is instrumental in
understanding genes function, gene networks, biological processes and effects of medical treatments.

A first key step in the analysis of gene expression data is the identification of groups of genes that
manifest similar expression patterns over several conditions. The corresponding algorithmic problem is
to cluster multi-conditional gene expression patterns. A clustering problem consists of n elements and a
characteristic vector for each element. A measure of similarity is defined between pairs of such vectors.
(In gene expression, elements will be genes, the vector of each gene will contain its expression levels
under each of the conditions, and similarity can be measured, for example, by correlation coefficient
between vectors.) The goal is to partition the elements into subsets, which are called clusters, so that
two criteria are satisfied: Homogeneity - elements inside a cluster are highly similar to each other; and
separation - elements from different clusters have low similarity to each other.

There is a very rich literature on cluster analysis going back over three decades. Several algorithmic
techniques were previously used in clustering gene expression data, including hierarchical clustering,
self organizing maps, simulated annealing, and graph theoretic approaches.

We have developed a novel clustering algorithm that we call CLICK - CLuster Identification via
Connectivity Kernels. Our work builds on a recent clustering approach of Hartuv and Shamir (cf. [1]).
The algorithm does not make any prior assumption on the number or the structure of the clusters. The
algorithm generates results with guaranteed properties, and is capable of handling large datasets very
fast. It has been tested successfully on a variety of clustering problems in different areas of biology.

2 Method and Results

The Algorithm: We assume that the input data is an n × m matrix, whose rows correspond to
elements, each row being a real vector of attributes of the corresponding element. The analysis of
the data involves three main phases: (1) Preprocessing - normalization of the data and calculation of
pairwise similarity between elements; (2) Clustering; and (3) Assessment and refinement of the results.
We concentrate here on the second phase.

The algorithm represents the input data as a weighted graph G, where vertices correspond to
elements and edge weights reflect pairwise similarity between the corresponding elements. Under some



No. 4 Shamir and Sharan 7

simplified probabilistic assumptions, the weight of an edge reflects the likelihood that its endpoints
originated from the same cluster.

Suppose we remove from the graph all edges whose weight is below a conservative threshold. It
is easy to see that clusters will tend to reside inside connected components of G. In the course of
the algorithm low likelihood edges are removed from G yielding smaller connected components, thus
refining the partition of the vertices of G. This iterative process continues until a stopping criterion
is met. Upon termination, the set of elements in each component is called a kernel.

The basic CLICK algorithm can be described recursively as follows: In each step the algorithm
handles some connected component of the subgraph induced by the yet unclustered elements. If the
component satisfies the stopping criterion, it is declared a kernel. Otherwise, a minimum weight
cut is computed, and the component is split into its two most loosely connected pieces according to
this cut. After the above process terminates, an adoption procedure enriches kernels by adding to
them singletons whose vectors are highly similar to the mean vector of the kernel. Finally, a merging
procedure merges similar clusters. Several ad-hoc refinements were developed in order to reduce the
running time of CLICK on very big instances.

Properties of the Clustering: The algorithm recognizes a connected component H as a kernel
iff its diameter is two, and the likelihood that it should be further partitioned is below a threshold.
H adopts a singleton iff its similarity to the mean of H is above some threshold. Two clusters are
merged iff their means are highly similar. Hence, the resulting clusters are homogeneous.

If H is not recognized as a kernel, it is cut into two pieces by removing a minimum weight cut from
H. Under some simplifying probabilistic assumptions, the two resulting pieces are the most loosely
connected. Along with the merging process, this ensures separation of the eventual clusters.

Results and Performance: We have applied our algorithm to several biological datasets of various
types, including gene expression data, cDNA oligo-fingerprint data, protein similarity data and DNA
sequence data. We compared the quality of our results against those of the HCS algorithm [1] on
a cDNA oligo-fingerprint dataset of size 2329 × 139, for which the true solution is known. Solution
quality was assessed by its Minkowski score which is defined as follows: Let MS be a binary matrix
with MS

ij = 1 iff i, j are in the same cluster in a solution S. Let MT be the corresponding matrix for
the true solution T . The Minkowski score of S is ‖MT −MS‖/‖MT ‖. Thus, the smaller the score the
better the solution. On this dataset CLICK reached a score of 0.6, while HCS got a score of 0.71.

Our algorithm is very fast and can cluster over 100,000 elements in several hours on a regular
workstation. The performance of the algorithm on real data sets is illustrated in Table 1.

Table 1: The performance of CLICK on various datasets.

Data Type #Elements #Edges Time (minutes)
oligo-fingerprint 2,329 134,352 0.5
oligo-fingerprint 22,118 20,915,098 2
protein similarity 72,623 1,796,067 11
protein similarity 117,835 7,277,067 149

References

[1] Hartuv, E., Schmitt, A., Lange, J., Meier-Ewert, S., Lehrach, H., and Shamir, R., An algorithm
for clustering cDNAs for gene expression analysis using short oligonucleotide fingerprints, Proc.
Third International Symposium on Computational Molecular Biology, 188–197, 1999.


