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1 Introduction: Non-Unique Probe Selection

We are interested in selecting oligonucleotide probes for DNA arrays [1]. In large transcript
families, such as alternative splice variants of a gene, or in a large family of closely homologous
genes (e.g., human heat shock proteins), it is often impossible to find enough unique 25-mer
probes that can be taken as a signature for a specific variant. Therefore we consider non-
unique probes [2].

For this study, we assume that we have many potential probe candidates and the task is
to select an appropriate subset of them for use on the chip. We assume that we know (an
approximation to) the probe-transcript affinity matrix A that relates transcript expression
level to observed signal. We have y = A ·x+c, where y ∈ Rm are the observed probe signals,
x ∈ Rn contains the transcript expression values, A ∈ Rm×n contains the affinity coefficients
between probes and transcripts, and c models additional noise or unspecific hybridization.
A probe i that matches a transcript j leads to a high affinity value Aij ≈ 0.1 to 1, say. The
target set of probe i is denoted by T (i). A probe i that is unrelated to transcript j leads to
a low affinity value of less than 10−4, say.

From the m� n probe candidates whose affinity values form the m rows of the affinity
matrix A, we would like to select at most µ ≤ m rows. We write H for the hybridization
matrix defined by Hij := 1 if j ∈ T (i), and Hij := 0 otherwise. We denote the index set of
the chosen rows by D for design. We have D ⊂ {1, 2, . . . ,m} and desire |D| ≤ µ. Let AD

and HD denote the matrices obtained from A resp. H by removing all rows whose index
is not in D. The requirements on D are that the equation y = AD · x must be stably and
robustly solvable for the n expression levels x, given the |D| probe signals y.

2 Condition Optimization

Let A be an m×n matrix of full rank n ≤ m, and let σ1 ≥ σ2 ≥ · · · ≥ σn > 0 be the singular
values of A. Then the condition of A is defined as cond(A) := σ1/σn. If A does not have
full rank n, then σn = 0, and we set cond(A) :=∞. The condition measures how changes in
the measurement y influence the solution x of the minimization problem ‖y−A · x‖ → min:

We have ‖∆x‖‖x‖ ≤ cond(A) · ‖∆y‖‖yA‖
, where yA is the projection of y on the range of A.

We assume that cond(A) <∞, i.e., that the affinity matrix that consists of all candidates
has full rank n, and that the associated hybridization matrix H satisfies the minimum and
average coverage constraints minj

∑
i Hij ≥M and

∑
i,j Hij ≥ nA. We let
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D := {D ⊂ {1, 2, . . . ,m} : |D| ≤ µ, cond(AD) <∞, minj
∑
i H

D
ij ≥M,

∑
i,j H

D
ij ≥ nA}

denote the set of admissible designs under the side conditions. It is assumed that D is not
empty; otherwise we have to increase µ or decrease M or A. The combinatorial problem is
to minimize cond(AD) among all D ∈ D.

As far as we are aware, the condition optimization problem has not been posed before in
the mathematical literature. It appears to be a difficult problem because the singular values
of two matrices AD and AD−i, where D − i := D \ {i}, are not related in an obvious way,
and also because the landscape of admissible designs potentially has many local minima. In
spite of these difficulties, we propose a greedy heuristic to obtain a good admissible design.

Greedy Condition-based Design

Input: An m× n affinity matrix A and hybridization matrix H
1. D ← {1, 2, . . . ,m}
2. B ← ∅, C ← +∞
3. while (|D| > n)
4. c← +∞, i∗ ← 0
5. for each i ∈ D
6. if (minj

∑
i′ H

D−i
i′j ≥M) and (

∑
i′,j H

D−i
i′j ≥ nA)

and (cond(AD−i) < c) then c← cond(AD−i), i∗ ← i
7. if i∗ = 0 then break
8. D ← D − i∗
9. if (|D| ≤ µ) and (c < C) then B ← D, C ← c

10. if (B = ∅) then B ← D, C ← c
Output: Design B with condition C = cond(AB)

The procedure starts with a full design and iteratively removes a single row to locally mini-
mize the condition while still satisfying the coverage constraints(lines 5–6). If the resulting
design is admissible it is compared against the current best admissible design B (line 9).
This is repeated until the design size equals the number of targets (line 3) or no smaller
design satisfying the coverage constraints can be found (line 7).

We evaluated the greedy heuristic against the
optimal selection for small artificial matrices with
18 probe candidates and 4 targets. It was at-
tempted to reduce the number of probes as far as
possible with a minimum and average coverage re-
quirement of 3 probes per target. Although the
greedy heuristic does not always find the optimal
solution, its performance is reasonably close to the
optimal design (found by exhaustive search) and
much better than choosing random subsets. The
typical behavior is shown to the right: Removing
a few probes improves the condition; removing too
many will eventually worsen the condition again.
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