
Motif Finding and Multiple Alignment through
Vector-Space Embedding of Protein Sequences

Arnab Bhattacharya, Tamer Kahveci, Ambuj K. Singh
Department of Computer Science

University of California, Santa Barbara, CA 93106
{arnab,tamer,ambuj}@cs.ucsb.edu

Keywords: motif, multiple alignment, vector space, dependency graph

1 Algorithm

We introduce a vector-space embedding of protein sequences which will allow us to find the motifs
in a set of proteins. Our method can also be used for the multiple alignment of more than two
proteins. It is superior to the existing methods that depend on the order of proteins since we
consider all the proteins at once.
Our motif finding method consists of the following steps:

1. Protein subsequences are mapped to points in a multi-dimensional space.

2. Spatially tight clusters of these points are found such that most or all of these proteins are
represented in each cluster.

3. A dependency graph is constructed with the clusters as vertices and directed edges between
the non-conflicting vertices.

4. The longest path in the graph is chosen as the motif.

Our multiple alignment algorithm adds another step:

5. Use the motif found in step 4 as the backbone of the alignment and recursively invoke the
motif finding algorithm for each unaligned region.

We will now explain each of these steps in more detail.
Step 1: A window of length w is slid along the protein sequence. Each positioning of the window
produces a subsequence of w residues. A score vector is computed for each such subsequence as
the concatenation of the score vectors of each residue. Each row of a score matrix is considered
to be the score vector of the amino acid for that row. A score vector maps to a point in a multi-
dimensional space. A protein of length n will thus have n−w + 1 points in the vector space. We
typically choose w = 3. We refer the reader to [1] for further details on vector space embedding.
Step 2: All the clusters of points in the vector space are identified. A cluster is defined as a
set of points (at most one from each protein) which are within a radius of r from each other and
which represents at least p % of the total number of proteins. Here, r and p are the distance and
the membership (the percentage of proteins in the cluster) thresholds respectively. Typically, r =
1-2% of the dimensions of the search space and p = 80-100 %.
Step 3: A directed dependency graph is built on the clusters as follows. Each cluster is considered
to be a vertex in the graph. A directed edge from vertex i to vertex j is added if all of the protein
residue positions in i are strictly less than those in j. Such vertex pairs are called non-conflicting.
A weight is assigned to each vertex based on how tight it is. A vertex (i.e., a cluster) with less
inter-point distances gets a larger weight. Also, a vertex with a higher membership gets a larger
weight. A weight is assigned to each edge as well. Each edge corresponds to a pair of points from
each protein. The edges get a higher weight if the differences between the residue positions of each
pair of points are 1) small and 2) not much varied. These conditions demote the number of gaps.



protein 3protein 1 protein 2

Figure 1: An illustration of the points of three proteins in a two-dimensional space. The
circles show the clusters (nodes of the dependency graph). The arrows show the edges of
the dependency graph. The dashed arrows show the largest weighted path.

Table 1: The motifs that we find for five proteins from the FMN-linked oxidoreductases
superfamily for w = 3. The bold letters show the backbone. The residue positions for the
motifs are (7, 141, 220, 270, 288) for 1al7:-, (81, 225, 284, 346, 348) for 1d3g:A, (9, 55,
108, 116, 118) for 1huv:A, (7, 97, 131, 178, 184) for 1icp:A, and (113, 184, 252, 336, 365)
for 1lco:B.

PDB id Motifs

1al7:- · · · VNE · · · LVR · · · LQT · · · LEE · · · GVR · · ·
1d3g:A · · · YKM · · · LVK · · · LST · · · LEA LL · · ·
1huv:A · · · VED · · · LVD · · · LST · · · IED LA · · ·
1icp:A · · · VEE · · · IVD · · · ISC · · · IEA · · · GVE · · ·
1lco:B · · · LKS · · · MLG · · · YQL · · · IEE · · · GVS · · ·

Step 4: Once the directed graph is built, each path on the dependency graph defines a motif.
This is because each vertex corresponds to a set of matching residues from the proteins, and the
directed edges of a path ensures that these matching residues do not conflict. We find the largest
weighted path in the graph. The weight of a path is defined as the sum of the weights of its
vertices and edges. Figure 1 illustrates the algorithm developed so far in two-dimensions.
Step 5: The motif found in Step 4 defines the backbone of the multiple alignment. We partition
the sequences by clipping the proteins from the residues in the motif. This produces sets of
subsequences whose end points are the two consecutive motif residues. Each of these sets are
then realigned using Steps 1 to 4 recursively until the length of the subsequences drop below a
threshold. These subsequences are then aligned using multiple alignment.

2 Results

In order to demonstrate the effectiveness of our method, we ran it on a number of proteins.
Table 1 shows the motifs found for the proteins 1al7:-, 1d3g:A, 1huv:A, 1icp:A and 1lco:B of
the FMN-linked oxidoreductases superfamily for w = 3. In this example, we find five motifs which
are shown in bold letters. The letters next to the bold ones are also similar with a high probability
since they are in the same window as the bold letters. For multiple alignment, the subsequences
between consecutive bold letters are aligned similarly.

References
[1] A.Bhattacharya, T. Can, T. Kahveci, A.K. Singh, and Y.-F. Wang. ProGreSS: Simultaneous

Searching of Protein Databases by Sequence and Structure. In PSB, pages 264–275, 2004.


