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Introduction.   
 

Since the advent of investigations into structural genomics, research has focused on correctly identifying 
domain boundaries, as well as domain similarities and differences in the context of their evolutionary 
relationships. As the science of structural genomics ramps up adding more and more information into the 
databanks, questions about the accuracy and completeness of our classification and annotation systems appear on 
the forefront of this research. A central question of paramount importance is how structural similarity relates to 
functional similarity. In this paper we begin to rigorously and quantitatively answer these questions by first 
exploring the consensus between the most common protein domain structure annotation databases CATH, SCOP 
and FSSP. Each of these databases explores the evolutionary relationships between protein domains using a 
combination of automatic and manual, structural and functional, continuous and discrete similarity measures. In 
order to thoroughly examine the issue of consensus, we build a generalized graph out of each of these databases 
and hierarchically cluster these graphs at interval thresholds. We then employ a distance measure to find regions 
of greatest overlap. Using this procedure we were able not only to enumerate the level of consensus between the 
different annotation systems, but also to define the graph-theoretical origins behind the annotation schema of 
Class, Family and Superfamily by observing that the same thresholds that define the best consensus regions 
between FSSP, SCOP and CATH correspond to distinct, non-random phase-transitions in the structure 
comparison graph itself. To investigate the correspondence in divergence between structure and function further, 
we introduce a measure of functional entropy that calculates divergence in function space. First, we use this 
measure to calculate the general correlation between structural homology and functional proximity. We extend 
this  analysis further by quantitatively calculating the average amount of functional information gained from our 
understanding of structural distance and the corollary inherent uncertainty that represents the theoretical limit of 
our ability to infer function from structural similarity. Finally we show how our measure of functional “entropy” 
translates into a more intuitive concept of functional annotation into similarity EC classes.  
Databases as graphs   
Through graph-morphing procedures for SCOP1, CATH2 and FSSP3 we end up with three weighted graphs, one 
for each database. The nodes in each graph are the protein domains and the edges are the relationships defined by 
distances or proximity from each database. We proceed to cluster these graphs at regular interval cutoffs. For 
example, for FSSP we build a graph at each threshold from Z=2 to 16 with step .5. In order to do this, we pick a 
cutoff and keep all edges that are larger than this cutoff4. 
Compare graphs. 

After TP, FP, TN and FN quantities have been defined, the distance measure between two graphs is merely a 
calculation of how many true positives the two graphs share with respect to false negatives and false positives. 
This measure is meant to calculate the level of agreement between the two graphs with respect to how many 
domain pairs they classify in the same cluster. Four Slices of the 3-D graph depicted in The cusps and maxima are 

easily discernable from these slices. 
At SCOP cutoff 1 Jaccard is actually 
smaller than the random control 
indicating that this level of 
annotation is probably not indicative 
of real evolutionary homology and 
may not indicate meaningful 
annotation. At SCOP Cutoff 2,3,4 
the Jaccard distance between FSSP 
and SCOP is many thousands 



standard deviations away from random. At SCOP cutoff 2 (Fold level) the cusp occurs at Z=6, at SCOP cutoff 3 
(Superfamily level) the maximum occurs at Z = 9 and SCOP cutoff 4 (Family level) the maximum occurs at Z = 
10-11. 
Phase transitions  
 The size of the largest clusters in FSSP graph plotted against the similarity cutoff threshold at which the graph is 

clustered.  It is worth noting that the size of the largest cluster in the 
random graph is larger than the largest cluster in FSSP until the end of the 
phase transition at Z = 12. This is due to the power-law nature of the FSSP 
graph4.  The size of the first six largest clusters plotted together as 
percentage of their original size. The computation was done by ordering 
the sizes of the clusters at each cutoff and plotting the largest six. The 
largest six clusters account for vast majority of the domains that are not 
orphans (singletons). It is worth observing that all the phase transitions 
occur between Z=6 and Z=9. The behavior of the size of the largest cluster 
(Fig. 6) and its difference with random bears a striking resemblance to the 
maxima we just observed on the distance landscapes between the three 

databases (Figs. 3,4). We can see that there are two very pronounced phase transitions in the size of the largest 
cluster. The first is from FSSP Z=6 to Z= 9 and the second is from Z=10 to Z=14. These represent the starting and 
ending points where the largest cluster “suddenly” breaks up into much smaller clusters the largest of which is 
almost fifty percent of the “parent”. The size of the largest cluster in the random graph is always much larger than 
the size of the largest cluster in the real graph up until Z > 12. Because of this we will argue that the third and final 
non-random transition occurs at around Z = 11. The behavior of the other clusters closely mirrors that of the 
largest cluster thus showing that the phase transition is not just the function of the major superfolds but of the 
majority of the PDUG graph. It is interesting that the first three largest clusters transition at around Z=9 while the 
smaller three transition closer to Z = 6. 
Function Uncertainty  

a,b. The FFS5 gain per domain with 
respect to structural similarity threshold.  
FFS of each cluster is compared to that 
expected by random for a cluster that size 
and added to the gain at that threshold 
(Eqs 6, 7). The final FFS gain is 
normalized by the number of domains 
annotated in the graph. The majority of 
the functional information is gained from 
Z = 6 to Z = 11, before and after those 
thresholds the information content  

a.    b. 
obtained from structural comparison plateaus. Thus we can quantify the amount of function information gained by 
correctly annotating a domain to its Fold as .095 bit per domain while correctly identifying the Superfamily yields 
around .15 bits per domain of functional information.  The intrinsic uncertainty with which we can expect 
annotation of function at a given structural similarity. For example, at Z = 6 (Fold level) on average the domain 
function cannot be annotated to be more precise than 1.6 bits per level on the GO tree. Note that there are two 
plateaus where the FFS does not significantly change with respect to Z score: the first starting from Z = 5 to Z = 8 
and the other starting from Z =9 all the way to Z = 11 showing an intrinsic correlation between structure and 
function at the Fold and Superfamily Level of annotation. This once again confirms the theoretical origins of this 
annotation by showing the conservation of function at those levels of structural comparison.  
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