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Emerging high-throughput experimental techniques for the characterization of protein
and complex structure yield noisy data with sparse information content, placing a significant
burden on computation to predict, optimize, and interpret the information provided. One
such experiment employs residue-specific chemical cross-linkers to confirm or select among
proposed structural models by testing consistency of cross-linking data with respect to model
geometry (Fig. 1). Recent applications include those by Young et al., using high-resolution
mass spectroscopy alone to correctly discriminate threading models of fibroblast growth
factor [7]; Scaloni et al., analyzing the binding mode of the calmodulin-mellitin complex [4];
and Sorgen et al., determining the arrangement of transmembrane helices in lac permease [6].

We have developed a mechanism for analyzing cross-linking information with respect to a
set of models, predicting the ability of experiments to discriminate among those models, and
optimizing a set of experiments accordingly. A probabilistic framework selects models based
on consistency with data (Fig. 1(c)), mediated by the geometric feasibilities of the cross-
links for the models [3], represented by “cross-link maps” (Fig. 1(b)), and the experimental
conditions, represented with noise and capture rates. We formalize model discriminability
in terms of differences in cross-link maps, and formulate experiment planning problems to
select sets of experiments that maximize such differences, accounting for the key factors
of discriminability, coverage, balance, ambiguity, and cost. We have developed a greedy
algorithm, generalizing those for related SetCover problems [1], that effectively navigates
the design space defined by these terms.

We are applying this mechanism in a study of the bacteriophage lambda Tfa chaper-
one protein, and have planned dicysteine mutations for model discrimination by disulfide
formation. Fig. 2 summarizes our planning results on 103 Tfa models, including three high-
quality threading models from our fold recognition meta-server [2] and 100 decoys from the
ab initio folding program Rosetta [5]. We are currently carrying out a minimized, balanced,
and least ambiguous set of six experiments to discriminate the three threading models with
discriminability two.

Our mechanism is very general, and we plan to study additional applications not tested
here, for example in the discrimination of protein-protein complexes, incorporating different
types of experimental data, and planning combinatorial possibilities of cross-linkers and
mutations. Our methods provide the experimenter with a valuable tool for understanding
and optimizing cross-linking experiments.
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Figure 1: Model discrimination by cross-linking. (a) Different predicted models of a
protein have different patterns of feasible cross-links (green dotted lines). (b) Cross-
link maps represent feasibilities with conditional relationship for cross-links (rows)
given models (columns), here shown as either high (H) or low (L). (c) Experimental
identification of a cross-link l1,2 provides evidence for and against models r and s,
based on consistency with cross-link maps and modulated by the capture and noise
rates of the experimental method (here uniformly κ and ν, respectively). Other terms
arise from other cross-links, both observed and unobserved.
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Figure 2: The relationship between coverage percentage C (%), discriminability ∆,
and number of experiments N in disulfide experiments planned for 103 Tfa models.
Pairs of parameters are varied, while the third is blocked at the indicated values. Our
greedy plans are roughly within a factor of two of a simplistic lower bound (data not
shown).
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