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The prediction of functional regions in genomic sequences has traditionally been based on the iden-
tification of features associated with genes or regulatory regions. Comparison of homologous genomic
sequences, e.g. from a pair of species, facilitates such identification [1, 5]. This is because functional
regions tend to be conserved in sequences which have evolved from a common ancestor, whereas non-
functional regions are more likely to mutate.

One drawback of pairwise comparative approaches to gene prediction is that non-functional regions
are required to have diverged to a degree that enables statistical procedures to distinguish them from
biologically active regions. These methods are therefore not applicable to discovering features present
only at close evolutionary proximity, such as primate-specific genes. Thephylogenetic shadowing
principle of [2] circumvents this problem by seeking to identify conserved regions among multiple
closely-related organisms. This has numerous advantages: sequence alignment is straightforward, the
relevant phylogenetic tree is easy to infer, and identification of conserved regions is possible using
standard evolutionary models.

To provide a systematic computational methodology for annotating genomic sequences based on
the principle of phylogenetic shadowing, we have developed thegeneralized hidden Markov phylogeny
(GHMP). The GHMP is a probabilistic graphical model [4] that combines conservation-based con-
straints deriving from multiple genomic sequences with algorithmic ideas that have proven useful in
single-organism gene annotation systems. Our approach synthesizes generalized hidden Markov model
gene finders, evolutionary models of nucleotide substitution, and phylogenetic trees. Similar ideas have
been presented by [6] and [7]. Our extensions include generalized hidden Markov dynamics; a frame-
and phase-consistent dual-strand hidden state space, supporting single-exon, multi-exon, and incom-
plete gene prediction; GC isochore-specific parameters; deterministic constraints on repeats, gaps, and
in-frame stop codons; more complete splice site modeling; and an automated iterative procedure for
alignment and tree building. The annotation is obtained as the mosta posterioriprobable trajectory
through a hidden space of functional states; this trajectory is computed efficiently using algorithms for
graphical model inference. Figure 1 shows a subcomponent of the GHMP graphical model correspond-
ing to an aligned forward-strand internal exon.

To limit the number of sequenced organisms required for functional annotation, we have also devel-
oped a methodology for species subset selection. The method chooses subsets according to a maximin
criterion on the weight of subtrees within the overall phylogenetic tree relating the species. Theory and
efficient algorithms for thismaximal Steiner subtreeapproach will be described at the conference.

We have implementedSHADOWER, a gene prediction system based on the GHMP. Table 1 shows
that, by exploiting the additional constraints from multiple-species conservation,SHADOWER outper-
forms existingab initio methods on a small dataset of single exons from five separate gene regions,
across 13 primates. The data were originally reported by [2]. In addition, an analysis using species sub-
sets of various sizes, each chosen by the maximal Steiner subtree criterion, revealed thatSHADOWER

needs only five of the available 13 primates to attain the performance reported in Table 1.
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Figure 1: An excerpt of the GHMP graph-
ical model corresponding to an aligned inter-
nal exon on the forward strand. The hidden
chain of functional states runs along the top.
Depicted underneath is a phylogenetic tree of
nucleotides, both observed (shaded) and unob-
served (unshaded). The bounding box (plate)
around the phylogenetic tree denotes duplica-
tion, Dk times. Each copy of the tree corre-
sponds to an alignment column, which popu-
lates the tree’s leaves.Dk too is random, al-
lowing the length of aligned exons to follow
an arbitrary distribution (thusgeneralizedhid-
den Markov phylogeny). The ovals labeled
as splice sites are not part of the language of
graphical models; they appear here to reduce
visual clutter.

Exon Exon
Nucl.(%) Partial Exact
Sn Sp Sn Sp Sn Sp

GENSCAN 44.7 34.0 2/5 2/3 1/5 1/3
MZEF 37.4 63.2 3/5 3/4 1/5 1/4
SHADOWER 100.0 89.6 5/5 5/6 4/5 4/6
SHADOWERb 42.7 42.2 2/5 2/5 1/5 1/5
SLAM 80.2 100.0 3/5 3/3 3/5 3/3

Table 1: Sensitivity and specificity of various gene finders on the primate exon datasets. Results are shown at
the nucleotide, partial exon (i.e. inexact boundaries), and exact exon level.GENSCAN [3] predicts complete or
incomplete genes, using only the human sequence data.MZEF [8] predicts individual internal exons (without frame
or phase consistency), using only the human sequence data.SHADOWER employs the GHMP to analyze multiple
orthologous sequences.SHADOWERb excludes exon boundary models, to exemplify a more limited approach based
on multiple-species conservation.SLAM [1] uses human-mouse homology in a generalized pair HMM.
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