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Abstract

Genome-scale models provide a concise representation of available data about a
biological process and can provide predictions of cellular behaviors which are difficult to observe.
Constraint-based modeling is an approach that constrains cellular behavior through the imposition
of physico-chemical laws, resulting in a solution space in which a cell’s behavior must lie.
Uniform random sampling of this constrained solution space allows for the unbiased appraisal of
the implications of the imposed physico-chemical constraints upon the reconstructed metabolic
network. The in silico sampling procedure was applied to the steady state flux space of the human
red blood cell metabolic network under simulated physiologic conditions yielded the following key
results: 1) probability distributions for all metabolic fluxes were computed for all fluxes and
showed a wide variety of shapes that could not have been inferred without computation; 2)
correlation coefficients were calculated between all fluxes, determining the level of independence
between any two fluxes, and identifying highly correlated reaction sets; and 3) the system-wide
effects of the change in one (or a few) variables (i.e. a simulated enzymopathy or setting a flux
range based on measurements of physiological considerations) were computed, showing that not
only do the ranges allowed to various fluxes change, but also their probability distributions and the
correlations between metabolic fluxes. Taken together, this in silico sampling procedure provides a
maturing of the constraint-based approach to modeling by allowing for the unbiased and detailed
assessment of the impact of the applied constraints on the reconstructed network.
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Figure 1. Algorithm for boxing in
solution space with parallelepiped and
generating uniform random samples.
A simple flux split was used as an
example to demonstrate how the in
silico sampling procure works (A).
The two dimensional null space is
constrained by the Vmax planes
corresponding to the three reactions in
the network (B). Once the null space
is capped off by the reaction Vmax
values, combinations choosing two of
the three sets of parallel constraints
leads to forming three potential
parallelepipeds (C). The smallest of
these parallelepipeds is chosen and
uniform random points within the
parallelepiped are generated (D)
based on uniform weightings on the
basis vectors defining the
parallelepiped (shown as black
arrows). Points within the solution
space are kept and those that fall out
of the solution space are discarded.
The fraction of the points generated
inside the parallelepiped that fall
within the solution space is called the
“hit fraction.” The hit fraction
multiplied by the volume of the
parallelepiped yields the volume of the
solution space.
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