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Abstract 
 

 Genome-scale models provide a concise representation of available data about a
biological process and can provide predictions of cellular behaviors which are difficult to observe.
Constraint-based modeling is an approach that constrains cellular behavior through the imposition
of physico-chemical laws, resulting in a solution space in which a cell’s behavior must lie. 
Uniform random sampling of this constrained solution space allows for the unbiased appraisal of
the implications of the imposed physico-chemical constraints upon the reconstructed metabolic
network.  The in silico sampling procedure was applied to the steady state flux space of the human
red blood cell metabolic network under simulated physiologic conditions yielded the following key 
results: 1) probability distributions for all metabolic fluxes were computed for all fluxes and
showed a wide variety of shapes that could not have been inferred without computation; 2)
correlation coefficients were calculated between all fluxes, determining the level of independence
between any two fluxes, and identifying highly correlated reaction sets; and 3) the system-wide 
effects of the change in one (or a few) variables  (i.e. a simulated enzymopathy or setting a flux 
range based on measurements of physiological considerations) were computed, showing that not
only do the ranges allowed to various fluxes change, but also their probability distributions and the
correlations between metabolic fluxes.  Taken together, this in silico sampling procedure provides a 
maturing of the constraint-based approach to modeling by allowing for the unbiased and detailed
assessment of the impact of the applied constraints on the reconstructed network. 
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Figure 1. Algorithm for boxing in 
solution space with parallelepiped and 
generating uniform random samples.  
A simple flux split was used as an 
example to demonstrate how the in 
silico sampling procure works (A).  
The two dimensional null space is 
constrained by the Vmax planes 
corresponding to the three reactions in 
the network (B).  Once the null space 
is capped off by the reaction Vmax
values, combinations choosing two of 
the three sets of parallel constraints 
leads to forming three potential 
parallelepipeds (C).  The smallest of 
these parallelepipeds is chosen and 
uniform random points within the 
parallelepiped are generated (D) 
based on uniform weightings on the 
basis vectors defining the 
parallelepiped (shown as black 
arrows).  Points within the solution 
space are kept and those that fall out 
of the solution space are discarded.  
The fraction of the points generated 
inside the parallelepiped that fall 
within the solution space is called the 
“hit fraction.”   The hit fraction 
multiplied by the volume of the 
parallelepiped yields the volume of the 
solution space.
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Figure 2: Probability flux 
distributions for human red 
blood cell.

The red blood cell model 
with maximum flux 
constraints was sampled 
using the in silico
algorithm.  The histograms 
next to each reaction 
represents the number of 
solutions satisfying the 
constraint conditions at 
each flux value.  This gives 
information about the 
solution space’s sensitivity 
to each constraint. 


