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1 Introduction

When predicting the functions of unannoted proteins based on a protein network, one relies
on some notions of “closeness” or “distance” among the nodes. However, inferring closeness
among the nodes is an extremely ill-posed problem, because the proximity information pro-
vided by the edges is only local. Moreover, it is preferable that the resulting similarity matrix
be a valid kernel matriz so that function prediction can be done by support vector machines
(SVMs) or other high-performance kernel classifiers [2]. Maximum entropy methods have
been proven to be effective for solving general ill-posed problems. However, these methods
are concerned with the estimation of a probability distribution, not a kernel matrix. In this
work, we generalize the maximum entropy framework to estimate a positive definite kernel
matrix.

We found that the diffusion kernel [1], which has been used successfully for making pre-
dictions from biological networks (e.g. [3]), can be derived from this framework. However,
one drawback inherent in the diffusion kernel is that, in the feature space, the distances
between connected samples have high variance. As a result, some of the samples are out-
liers, which should be avoided for reliable statistical inference. Our new kernel based on
local constraints resolves this problem and thereby shows better accuracy in yeast function
prediction.

2 Locally Constrained Diffusion Kernels

SVMs work by embedding samples into a vector space called a feature space, and search-
ing for a linear discriminant function in such a space [2]. If we have an undirected graph
with n nodes and m edges, the n nodes in a graph are mapped to n points in the feature
space 1, , &, € F. The embedding is defined implicitly by specifying an inner product
via a positive definite kernel matrix K;; = miij, i,7 = 1,--- ,n. Because the discriminant
function is solely represented by inner products, we do not need to have an explicit represen-
tation of ®1,--- ,®,. Once a kernel matrix is determined, the (squared) Euclidean distance
between two points can also be computed as Dy; := ||&; — ;|| = Ki; + Kj; — 2K;.

We have found that the matrix of the diffusion kernel [1] can be derived as the optimal
solution of the following maximum entropy problem:

n}%ntr(KlogK)7 tr(K) =1,tr(KL) < ¢,

where log denotes the matrix logarithm operation, ¢ is a positive constant, and L is the
graph Laplacian matrix [1]. Let {s;,t;};2; denote the node pairs connected by m edges.
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Figure 1: Mean ROC score as a function of the diffusion parameter. The plots show the
mean ROC scores computed across the set of CYGD categories, using (A) the metabolic network
and (B) the protein-protein interaction network. The solid and broken lines correspond to the new
and conventional kernels, respectively.

The quantity tr(KL) equals the sum of Euclidean distances between connected samples:
tr(KL) = 37 ||zs; — :ctj||2. The objective function corresponds to the (negative) von
Neuman entropy. In order to impose a more uniform network structure, we consider the
following local constraints:

mlintr(KIOg K)7 tr(K) = 17tr(K‘/J) < Vs .7 = 17 U (1)

where tr(KV;) = ||&s; — @,||> corresponds to the Euclidean distance between each pair of
connected samples.

3 Experiments

We computed kernels from two different types of yeast biological networks. The first network
was derived by [3] from the LIGAND database of chemical reactions in biological pathways.
The second network was created by [4] from protein-protein interactions. We tested the
kernels’ utility in the context of an SVM classification task. We used as a gold standard the
functional categories of the MIPS Comprehensive Yeast Genome Database. We selected all
functional categories containing at least 30 positive examples resulting in 36 categories for
the metabolic network and 76 categories for the protein-protein interaction network. Figure 1
compares the classification performance of SVMs. The figure shows that, for both types of
network, our new kernel out-performs the conventional diffusion kernel.
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