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1 Introduction

Although fairly accurate databases exist for protein-coding genes, little is known about
another important class of genes known as noncoding RNA genes. These genes, which
have been implicated in a wide variety of critical biochemical pathways including brain
development [7] and viral defense [5], are not translated into polypeptides. Instead, their
transcribed RNAs fold into stable, base-paired secondary and tertiary structures that confer
catalytic ability. For the purposes of this paper, it is especially important to note that these
secondary structures cause noncoding RNA genes to contain pseudo-palindromic sequences.

Unfortunately, these pseudo-palindromic and other signals are not statistically sufficient
for the computational identification of such genes [9]. Because they are difficult to detect
even through biological techniques, it is important that accurate computational approaches
be developed [10]. Although many heuristic and specialized methods have been suggested,
comparative genomics approaches [8] have shown particular promise. However, even these
approaches are primitive. For instance, current comparative genomics approaches are limited
to two sequences, despite recent work showing the importance of using several related species
[2]. Other problems include various heuristic approximations and poor scaling.

Here, we briefly present a machine learning approach to genome-wide noncoding RNA
gene prediction with multiple sequence alignments. The algorithm we describe scales lin-
early with respect to the length and number of genomes. More importantly, the approach
is statistically sound, and allows the direct computation of probabilities through modular
protein-coding, noncoding RNA, and intergenic sequence models.

2 Theory

We have developed a graphical model that integrates probabilistic context-free grammars
(PCFGs) and phylogenetic trees within a generalized hidden Markov model (GHMM) frame-
work. The latter of these models, the GHMM, is a straightforward generalization of the
HMM in which a state can explicitly choose the length of its emission (according to a spec-
ified length prior). Our GHMM can be conceptually considered as three different states,
each of which emits sequence alignments based on protein-coding, noncoding RNA, or inter-
genic sequence models.3 The protein-coding and intergenic models emit multiple alignment
columns according to standard GHMMs [1] and phylogenetic trees.

On the other hand, the noncoding RNA model emits columns according to PCFGs and
phylogenetic trees that define a joint probability distribution over pairs of columns. This si-
multaneous emission of multiple, distant columns allows the PCFG to model the evolutionary
dependencies between base-paired positions within noncoding RNA genes [9]. In addition,
the inclusion of phylogenetic trees permits us to model the expectation that base-paired
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positions within noncoding RNA genes will undergo compensatory mutation. Perhaps more
importantly, alignments of several, closely related genomes can be used (phylogenetic shad-
owing) [2]; because noncoding RNA genes tend to mutate faster than protein-coding genes,
such sequence sets prevent pathological alignments and increase the accuracy of comparative
genomics approaches. Despite these apparent benefits, phylogenetic trees that define joint
distributions over pairs of columns have only been recently developed [6].

Unfortunately, because PCFGs are too inefficient for long sequences, they must be ap-
proximated. Although Rivas and Eddy [9] use a windowing approach, it is both inefficient
and probabilistically unsound. We instead enforce a standard constraint on the GHMM
length priors, ie. that it be zero for all lengths beyond some constant C. This constraint
allows us to straightforwardly and efficiently compute the necessary PCFG probabilities in
time O(C3 +LC2), where L is the length of the multiple alignment. For instance, the inside
probability of the first C bases can be computed in the standard fashion in time O(C3), while
the necessary probabilities for each remaining base can be incrementally computed in time
O(C2). We briefly note that this approximation is “perfect,” ie. the probability computed
in this fashion is exactly equivalent to the probability computed naively.

3 Experimental Results

Seven yeast species were downloaded and analyzed. Genome-wide homology maps were first
generated for these species [4], which were then used to align the genomes [3]. Aligned ge-
nomic DNA for annotated ORFs and noncoding RNAs was then extracted, and the remainder
was classified as null sequence. The model was then used to reclassify these sequences; these
model reclassifications were then compared against the known (true) classification. Although
initial results are very promising, we intend to systematically study the performance of our
algorithm against other noncoding RNA genefinders in the future.
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