
1

An Evolutionary Computation Approach for
Detecting Repetitions in Biosequences

Adam Adamopoulos, 1 Katerina Perdikuri, 2

Keywords: biological sequences, repetitions, evolutionary programming, genetic algorithms

1 Introduction.

One of the most important goals in computational molecular biology is allocating repeated
patterns in nucleic or protein sequences, and identifying structural or functional motifs that
are common to a set of such sequences. In this paper we introduce a new approach to detect
the repetitions of fixed length in Biosequences using an Evolutionaty Computation approach.
Our approach involves evolving a population of patterns in an evolutionary manner and
gradually improving the fitness of the population as measured by an objective function,
which measures the approximate repetitions of the patterns in the given sequence. The
general attraction of the approach is the ability to detect repeated schemas, thus inferring
motifs of fixed length from biosequences. Genetic Algorithms and Evolutionary Computation
have been succesfully applied so far in the Multiple Molecular Sequence Alignment problem
in order to identify similarities among sequences [1].

2 Methodology.

Biosequences, such as DNA and Protein sequences, can be seen as long texts over specific
alphabets, encoding the genetic code of living beings. Searching for repeated sub-sequences
of any length over those texts could be modeled as searching for a set of given patterns in a
“text”.

In our approach we consider the population of a Genetic Algorithm as the population
of p words of length l. For each particular run, the population size p (i.e. the number of
individuals) of each generation, as well as the length l of each one word of the population are
kept constant. After establishing a population of words the population is randomly initial-
ized. When the initialization procedure is completed all words of the population are random
strings drawn from the ΣDNA alphabet. The fitness f of each particular word is evalu-
ated considering as fitness (or evaluation) function the number of approximate occurrences
(repetitions) of the word in the input sequence.

The overall structure of the method is shown in Figure 1. To go from one generation to
the next, children are derived from parents that are chosen by some kind of natural selection.
To create a child, an operator is selected that can be a crossover (mixing the contents of the
two parents) or a mutation (modifying a single parent). Each operator has a probability of
being chosen. Thus the algorithm is divided in two stages. The first one is the evolutionary
phase where the new population of individuals/words is generated and the searching phase
where each individual is evaluated by counting its number and exact positions of occurrences.

Compared to other techniques ([2], [3]) our algorithm is linear to the length of the
input sequence and has the advantage of allowing the user to specify the exact length of

1Laboratory of Medical Physics, Department of Medicine, Democritus University of Thrace,
Alexandroupolis, Greece. E-mail: adam@med.duth.gr

2Research Academic Computer Technology Institute, 61 Riga Feraiou Street, 26221 Patras,
Greece. E-mail: perdikur@ceid.upatras.gr



2

the repetitions the biologist looks for. Taking into consideration the easy parallelisation of
Genetic Algorithms we believe that our method can be used in many practical applications.
Moreover Genetic Algorithms could be successfully used as a practical way to solve many
computationally difficult problems in the areas of Sequence Search and Alignment. They
are intellectually satisfying in their simplicity and the way they attempt to mimic biological
evolution.

FIND REPETITIONS(X,l, p, n, pm, pc, elitism)
Initialize population of words
WHILE n ≥ 1, DO

Evaluate-Fitness: compute the repetitions of each word of the population;
Produce Next Generation: compute the next generation;

If elitism 6= 0, perform elitism;
If pm ≤ const, perform mutation;
If pc ≤ const, perform uniform crossover;

Report individuals in descending order
END FIND REPETITIONS

Figure 1: Schematic View of the Genetic Algorithm Methodology

3 Conclusions and Future Work.

Our method efficiently computes the repetitions inside a biosequence by evolving a popu-
lation of repeated patterns in an evolutionary manner (mutation and crossover) and finally
reporting those with high fitness function. Our future work is three fold. The first one con-
cerns the modification of the algorithm by assigning a credit to the operators of mutation
and crossover. Thus, each time a new individual is generated, if it yields some improvement
over its parents, the operator that was directly responsible for its creation gets the largest
part of the credit and so in the new generation we can dynamically change the probability of
the mutation or crossover operator. This can reduce the time complexity needed to compute
the mutation and crossover operation for the population in each generation. The second
research direction concerns the addition of one operator responsible for inserting gaps inside
repeated patterns thus giving the possibility of inferring structured patterns from the input
biosequence. Finally an interesting problem arises from having “don’t care symbols” in the
input sequence [4]. A “don’t care” symbol has the property of matching any symbol of a
given alphabet. We believe that our approach can efficiently compute the repetitions even
in biosequences with “don’t cares”.

References
[1] Zhang, C., Wong, A.K. 1997. A genetic algorithm for multiple molecular sequence alignment.

Comput. Appl. Biosci., Vol. 13. (1997) pp. 565-581.

[2] Kurtz, S., Schleiermacher, C. 1999. REPuter: fast computation of maximal repeats in complete
genomes. Bioinformatics, Vol. 15, (1999) pp. 426-427.

[3] Tsunoda, T., Fukagawa, M. Takagi, M.T. 1999. Time and memory efficient algorithm for ex-
tracting palindromic and repetitive subsequences in nucleic acid sequences. In Proceedings of
the Pacific Symposium on Biocomputing, Vol. 4, (1999) pp. 202-213.

[4] Iliopoulos, C., Mohamed, M., Mouchard, L., Perdikuri, K., Smyth, W.F., Tsakalidis, A. 2003.
String Regularities with Don’t Cares. Nordic Journal of Computing, Vol. 10 (2003) pp. 40-51.


