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1 Introduction.

The abundance of genomic data available today allows for construction of genome-scale
metabolic networks for many organisms. The topology of the type of networks considered
here is determined by an m×n stoichiometric matrix, S, whose rows and columns represent
the system’s metabolites and reactions, respectively. The dynamics of the system is given by
ẋ(t) = Sv, where x is the m-dimensional vector of metabolite concentrations, “ ˙ ” denotes
time-derivative, and v is a vector of fluxes which we assume is independent of concentrations
and time.

Under the assumption that the system is in steady-state, we have that Sv = 0, and
to obtain biologically feasible solutions to this equation, we also impose the condition that
v ≥ 0. The solution set is a so-called convex cone which can be generated by a finite
(and unique up to a multiple) number of vectors, i.e., each biologically feasible flux vector
(when the system is in steady state) can be expressed as a non-negative linear combination
of these extreme pathways [2]. The extreme pathways are the edges of the convex cone, or
more precisely, they are conically independent, i.e., no such vector can be expressed as a
non-negative linear combination of any other vectors in the cone.

Given a metabolic network, where the metabolites are represented by the nodes and the
edges represent the associated reactions, we compute the extreme pathways using an algo-
rithm presented in [3] (see also [4]). The algorithm uses matrix operations similar to those
used in the well-known Gaussian elimination algorithm. Such operations require frequent
access to memory, significantly degrading performance of the algorithm if large matrices
are stored. Furthermore, the computational time (and the number or extreme pathways)
typically grows exponentially as the size of the network grows linearly. Existing implementa-
tions work well for relatively small networks, but are of limited use for genome-scale systems.
Here, we propose two means to improve the performance of computing extreme pathways: an
efficient sparse matrix storage and computational procedure and a scheme to select pivoting
columns which we will refer to as the exponential threshold method.

2 Description of the algorithm

We now give a simplified version of the extreme pathway algorithm. The algorithm may
be described as a sequence of tableaux T 0, T 1, . . . , T N , where the initial tableau is given by
T 0 = [ I S′ ], and the final tableau T N = [P 0 ]. In the initial tableau, S is the m × n

stoichiometric matrix, “prime” denotes transpose, and I is the n × n identity matrix (and
hence T 0 is an n × (n +m) matrix). The final tableau, T N , for some 0 < N ≤ m, consists
of the matrix P whose rows are the extreme pathways, and the zero matrix, 0, which has m

columns. Converting the right hand matrix S′ to the zero matrix is done column by column
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using elementary row operations, each tableaux corresponding to a column. For 1 ≤ i ≤ N ,
the tableau T i is obtained from T i−1 by first choosing a pivoting column of the right hand
matrix (originating from S′) to zero out, column j, say. Suppose there are pos positive, neg
negative, and z zero elements in column j. First, the z rows of T i−1 containing a zero in
column j are copied to T i. Then each of the pos rows which contain positive elements in
column j is combined (using an elementary row operation) with each of the neg rows which
contain negative elements in column j so that a zero is produced in column j of T i. More
precisely, if T i−1

s,j > 0 and T i−1

t,j < 0 for some s and t, then |T i−1

t,j |T
i−1
s + |T i−1

s,j |T
i−1

t is the

new row to be added to T i. (Here, T i−1
s denotes the sth row, T i−1

s,j is the (s, j)-element in

the tableau T i−1, and |x| is the absolute value of x.) Finally, all rows which are not conically
independent are deleted from T i. Hence, the number of rows in T i is at most z+ neg ∗ pos.

3 Sparse matrices and the exponential threshold method

The stoichiometric matrix contains few non-zero elements (about 5%) and although the final
pathway matrix is less sparse (about 25% non-zero elements), we believe that sparse matrix
methods used with success in similar algorithms, such as Gaussian elimination, can also
benefit implementations of the extreme pathway algorithm. Memory is conserved since only
non-zero entries of matrices are stored, and computational performance is improved since row
operations use only non-zero elements of the vectors. There are many storage schemes for
sparse matrices each with its own type of data structures, and the problem usually dictates
which particular scheme is employed ([1], pg. 37). From Section 2, we see that for the
extreme pathway algorithm it is important that individual column elements and whole rows
can be accessed efficiently, so the storage method must be designed with these objectives in
mind.
In Section 2 we saw that the aim of the extreme pathway algorithm is to zero out the

columns of the tableaux using elementary row operations. Furthermore, for a fixed iteration,
the number of rows to be added to the next tableau depends on pos and neg, the number of
positive- and- negative elements, respectively, in the pivoting column. Our proposed method
dictates that a column is processed only if pos ∗ neg < T, where T is some threshold. When
all the columns of a tableau have been tested, the threshold is raised (exponentially) and the
process starts anew, if there are any remaining columns to be zeroed out. The rationale for
the threshold method is that the sparse columns are processed first since they require less
computation, and postponing processing the denser columns may result in some of their non-
zero elements being zeroed out by the elementary row operations performed in the earlier
iterations, i.e., doing less work early may reduce the amount of work that has to be done
later, resulting in less overall work. Preliminary results seem to indicate that this is indeed
the case.
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