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1 Introduction.  
Gene expression time-course data is usually obtained by performing microarray experiments at 
consecutive time points. The analysis of these data is helpful to reveal the mechanisms regulating 
different cellular processes. Different from other microarray data, the pattern represented by each 
profile is decided not only by the observations at different time-points, but also by the order of these 
observations. This sequential dependence is crucial for clustering processing and validation.   
 

Our research addresses the problem of clustering validation for time-course data by proposing a novel 
hidden Markov model (HMM)-based clustering validity index. In the index definition, we use a 
specially designed HMM to model the data distribution under the constraints of the clustering result. 
The evaluation is calculated based on the likelihood of each time series given this HMM. The main 
novelty of the proposed index is its ability to take account of the temporal dependences in the 
sequential data. Contrary to other validity indexes, in the proposed model the observations at different 
time-points are not considered independently, and the dependences in each time-interval are modeled 
and used to evaluate the clusters quality explicitly. In other words, if these dependences change 
because of permutations among time-points, the validation result is able to reflect such a change 
accurately. The simulation discussed in next subsection was designed to test this ability. 
 
2 Simulation.  
In this experiment, we generated two datasets which have the same observations but in different order. 
Any object in both datasets has 9 attributes, which can be divided into two categories. The first 
category includes 4 attributes, whose values are i.i.d. samples from zero-mean Gaussian distributions. 
Since there is no useful information for clustering in these 4 features, we called them noninformative 
features. The rest 5 attributes, called informative features, are generated from three different basic 
patterns, as shown in Figure 1(a). To generate similar but distinct sequences, random variables with 
different distributions are added to each component of the basic patterns, which is shown in Figure 
1(b, c). As shown in Figure 1(d), all the informative features are observed at the first 5 consecutive 
time-points in dataset I, which shows three distinctive patterns. Dataset II is generated by permuting 
the order of the attributes in dataset I so that each informative feature is separated by noninformative 
features, as shown in Figure 1(e).  Since all the noninformative features are i.i.d. and unrelated with 
the basic patterns, the dependence between a noninformative and an informative feature is very weak, 
and, therefore, interleaving the two kinds of features reduces the sequential dependences in the whole 
data.  
 
In order to corroborate the effectiveness of the proposed HMM-based index, the partitions with 
different numbers of clusters, from 2 to 10, were obtained using one of the most popular and simplest 
methods, K-means. As shown in Table 1, although the datasets share the same observations, the 
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proposed algorithm produces different evaluations for the two datasets, and suggests different optimal 
numbers of clusters for them. 

 
Figure1: Illustration of the generation of the simulation data. (a) three basic patterns for the informative features; 
(b) density function of the noise model added on the first two patterns; (c) density function of the noise model 
added on the third pattern; (d) simulation dataset I; (e) simulation dataset II. 

According to the results of the proposed index, the optimum number of clusters for dataset I is 
estimated as 3, which agrees with the original model generating the data. Notice that because of the 
bimodal noise added to the third basic pattern, this cluster shows a more disp ersive distribution than 
the other two and tends to be split into several groups. This is reflected in the curve of the proposed 
index, which displays a sub-optimum for the partition with 6 clusters. In dataset II, the sequential 
dependences are reduced by permutation, so that the noise model becomes overwhelming and gets 
emphasized in the clustering evaluation. As shown in Table 1, although a sub-optimum is shown for 
the partition with 3 clusters, the proposed index suggests that the optimal number of clusters for 
dataset II is 6.  
 
Comparison has been performed with the results of the Silhouette [1] and Davis-Bouldin indexes [2]. 
Both indexes ignore the sequential dependences in the data and give the same evaluation on both 
datasets, which, as shown in Table 1, is similar to the result of the proposed index for dataset II. 

Index 2 3 4 5 6 7 8 9 10 

HMM-based index for 
Dataset I 0.5000 0.7042 0.4845 0.3590 0.6542 0.4793 0.3987 0.2058 0.2101 

HMM-based index for 
Dataset II 

0.5000 0.6115 0.4196 0.4960 0.6156 0.4473 0.3741 0.1915 0.1959 

Davis-Bouldin index  0.6607 0.4407 0.8404 0.6252 0.4306 2.2809 2.2748 2.2252 2.2057 

Silhouette index  0.5388 0.7134 0.5593 0.6688 0.7260 0.6536 0.4945 0.4133 0.3422 

Table 1: Values of different indexes for the two simulation datasets 
 

3 Conclusion.  
We have illustrated the ability of the proposed index to capture the sequential dependence of time 
series data. This ability is reflected in the higher robustness of the HMM-based index to deal with data 
corrupted by noise models more general than the Gaussian one, which is a very attractive property in 
the context of gene expression data analysis. 
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